14 research outputs found

    River systems and their water and sediment fluxes towards the marine regions of the Mediterranean Sea and Black Sea earth system. An overview

    Get PDF
    A quantitative assessment of the riverine freshwater, suspended and dissolved sediment loads is provided for the watersheds of the four primary (Western Mediterranean-WMED, Central Mediterranean-CMED, Eastern Mediterranean-EMED and Black Sea-BLS) and eleven secondary marine regions of the Mediterranean and Black Sea Earth System (MBES). On the basis of measured values that cover spatially >65% and >84% of MED and BLS watersheds, respectively, water discharge of the MBES reaches annually almost the 1 million km3, with Mediterranean Sea (including the Marmara Sea) to provide 576 km3 and the Black Sea (included the Azov Sea) 418 km3. Among the watersheds of MED primary marine regions, the total water load is distributed as follows: WMED= 180 km3; CMED= 209 km3; and EMED= 187 km3. The MBES could potentially provide annually some 894 106 t of suspended sediment load (SSL), prior to river damming, most of which (i.e., 708 106 t is attributed to MED). Between MED primary marine regions, CMED receives the highest amount of suspended sediment (287 106 t), followed by WMED (239 106 t) and EMED 182 106 t, while 185 106 t are delivered to BLS. The dissolved load (DL) of MBES is about 376 106 t, from which 215 106 t (approximately 57%) is provided by the MED watershed. The large river systems (watershed>104 km2) provide >85% of the water load, >80% of SSL and >60% of DL of both MED and BLS

    Water Masses of the Mediterranean Sea and Black Sea: An Overview

    No full text
    This overview presents the different water masses present in the various primary and secondary marine regions of the Mediterranean Sea and Black Sea, providing information on their main physical characteristics (i.e., temperature, salinity, density), the water depths at which they have been observed and the processes involved in their formation. There is a characteristic difference in the overall hydrology of the Mediterranean Sea compared to the Black Sea, in terms of the number and characteristics of water masses and their formation processes, although they form a single (integrated) marine system. This difference is explained by the limited communication between the two seas through the Sea of Marmara and its straits (the Dardanelles and Bosporus) and by the fact that the Mediterranean Sea is a condensation basin while the Black Sea is a dilution basin; therefore, the deficit of water in the former is compensated by the inflow of Atlantic waters, while the surplus in the latter outflows to the Aegean Sea. In total, 21 different water masses have been identified in the Mediterranean Sea (excluding the Straits of Gibraltar and the Sea of Marmara) compared to the 5 water masses identified in the Black Sea (excluding the Sea of Azov). This large number of water masses is attributed to coastal morphology (i.e., presence of straits) and submarine relief (i.e., deep basin separated by shallow sills) and different formation processes

    Nitrogen and Phosphorus Loads in Greek Rivers: Implications for Management in Compliance with the Water Framework Directive

    No full text
    Reduction of nutrient loadings is often prioritized among other management measures for improving the water quality of freshwaters within the catchment. However, urban point sources and agriculture still thrive as the main drivers of nitrogen and phosphorus pollution in European rivers. With this article we present a nationwide assessment of nitrogen and phosphorus loads that 18 large rivers in Greece receive with the purpose to assess variability among seasons, catchments, and river types and distinguish relationships between loads and land uses of the catchment. We employed an extensive dataset of 636 field measurements of nutrient concentrations and river discharges to calculate nitrogen and phosphorus loads. Descriptive statistics and a cluster analysis were conducted to identify commonalties and differences among catchments and seasons. In addition a network analysis was conducted and its modularity feature was used to detect commonalities among rivers and sampling sites with regard to their nutrient loads. A correlation analysis was used to identify major possible connections between types of land uses and nutrient loads. The results indicated that the rivers Alfeios, Strymonas, and Aliakmonas receive the highest inorganic nitrogen loads while the highest inorganic phosphorus loads were calculated for the rivers Strymonas, Aliakmonas, and Axios. Concerning the temporal variation of loads, inorganic nitrogen presented a peak on March and gradually declined until October when the dry period typically ends for most regions of Greece. Inorganic phosphorus loads had the highest average value in August and the lowest in October. Thus, our findings confirmed the presence of a typical seasonal variation in nitrogen loads that follows the seasonality in hydrology where high surface runoff during the wet months contribute to higher river discharges and higher nitrogen loads from the catchment. On the contrary, high phosphorus loads persisted during dry months that could be attributed to a dilution effect. Furthermore, the results imply a clear connection between agriculture and both nitrogen and phosphorus. Overall, this work presents extensive information on the nitrogen and phosphorus loads that major rivers in Greece receive that can largely aid water managers to adapt and revise basin management plans in accordance with agricultural management (e.g., which months farmers should reduce the use of fertilizers) with the purpose of meeting the environmental targets defined by the Water Framework Directive (WFD)

    Coastal Vulnerability Assessment for Future Sea Level Rise and a Comparative Study of Two Pocket Beaches in Seasonal Scale, Ios Island, Cyclades, Greece

    No full text
    The coastal zone may be considered as the location where the marine and land environments interact dynamically and coexist with human societies. Globally, natural and human systems are being severely threatened by the sea level rise related to climate change. The outcome between the dynamic relationship of coastal environments and marine processes, and the future sea level rise as predicted by scientific reports, is the vulnerability of coastal areas such as sandy beaches, pocket beaches and low-lying coastal areas. The current research aims to assess the coastal vulnerability of Ios Island, Cyclades, Greece for the next 100 years and to identify areas that are comparatively more vulnerable to future sea level changes. Moreover, the seasonal changes concerning sedimentological and morphological characteristics of two pocket beaches of Ios Island, Mylopotas and Magganari, are also examined. From the application of the Coastal Vulnerability Index, 92.37% of the total length of the coastline of Ios Island is characterized by a very low vulnerability as it consists of rocky shores and cliffs, while sandy and pocket beaches are characterized by a very high vulnerability. From the fieldworks and data processing, the seasonal changes mainly concern the seabed’s topography, the sediments’ texture of the collected sand samples, the foreshore and backshore topography, as well as seasonal shoreline displacement, using the Digital Shoreline Analysis System tool (DSAS)

    Coastal Vulnerability Assessment for Future Sea Level Rise and a Comparative Study of Two Pocket Beaches in Seasonal Scale, Ios Island, Cyclades, Greece

    No full text
    The coastal zone may be considered as the location where the marine and land environments interact dynamically and coexist with human societies. Globally, natural and human systems are being severely threatened by the sea level rise related to climate change. The outcome between the dynamic relationship of coastal environments and marine processes, and the future sea level rise as predicted by scientific reports, is the vulnerability of coastal areas such as sandy beaches, pocket beaches and low-lying coastal areas. The current research aims to assess the coastal vulnerability of Ios Island, Cyclades, Greece for the next 100 years and to identify areas that are comparatively more vulnerable to future sea level changes. Moreover, the seasonal changes concerning sedimentological and morphological characteristics of two pocket beaches of Ios Island, Mylopotas and Magganari, are also examined. From the application of the Coastal Vulnerability Index, 92.37% of the total length of the coastline of Ios Island is characterized by a very low vulnerability as it consists of rocky shores and cliffs, while sandy and pocket beaches are characterized by a very high vulnerability. From the fieldworks and data processing, the seasonal changes mainly concern the seabed’s topography, the sediments’ texture of the collected sand samples, the foreshore and backshore topography, as well as seasonal shoreline displacement, using the Digital Shoreline Analysis System tool (DSAS)

    An Insight into the Factors Controlling Delta Flood Events: The Case of the Evros River Deltaic Plain (NE Aegean Sea)

    No full text
    The present contribution aims to give an insight into the main terrestrial and marine processes leading to delta flooding in the case of the transboundary Evros delta, located at the microtidal NE Aegean Sea, on the basis of recorded flood events in the Evros deltaic plain. The prevailing weather conditions at the onset of the event, along with sea-level rise above the mean state, portray the mechanism for the development of compound flood events and subsequent riparian flooding. This system blocks the riverine water’s seaward exit, resulting in the flooding of the lower deltaic plain. The river discharge is recognized as a secondary factor acting mainly toward the persistence of the events. Several limitations restrict the quantification potential of the relative contribution of the key factors to the development, onset, and duration of a flood. Mitigation of the impacts of such flood events requires intercountry cooperation and a management plan based on a network of environmental monitoring

    An Insight into the Factors Controlling Delta Flood Events: The Case of the Evros River Deltaic Plain (NE Aegean Sea)

    No full text
    The present contribution aims to give an insight into the main terrestrial and marine processes leading to delta flooding in the case of the transboundary Evros delta, located at the microtidal NE Aegean Sea, on the basis of recorded flood events in the Evros deltaic plain. The prevailing weather conditions at the onset of the event, along with sea-level rise above the mean state, portray the mechanism for the development of compound flood events and subsequent riparian flooding. This system blocks the riverine water’s seaward exit, resulting in the flooding of the lower deltaic plain. The river discharge is recognized as a secondary factor acting mainly toward the persistence of the events. Several limitations restrict the quantification potential of the relative contribution of the key factors to the development, onset, and duration of a flood. Mitigation of the impacts of such flood events requires intercountry cooperation and a management plan based on a network of environmental monitoring
    corecore